Serveur d'exploration sur la rapamycine et les champignons

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Inhibition of GSK-3β activity can result in drug and hormonal resistance and alter sensitivity to targeted therapy in MCF-7 breast cancer cells.

Identifieur interne : 000E61 ( Main/Exploration ); précédent : 000E60; suivant : 000E62

Inhibition of GSK-3β activity can result in drug and hormonal resistance and alter sensitivity to targeted therapy in MCF-7 breast cancer cells.

Auteurs : Melissa Sokolosky [États-Unis] ; William H. Chappell [États-Unis] ; Kristin Stadelman [États-Unis] ; Stephen L. Abrams [États-Unis] ; Nicole M. Davis [États-Unis] ; Linda S. Steelman [États-Unis] ; James A. Mccubrey [États-Unis]

Source :

RBID : pubmed:24407515

Descripteurs français

English descriptors

Abstract

The PI3K/Akt/mTORC1 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, and metastasis. One molecule regulated by this pathway is GSK-3β. GSK-3β is phosphorylated by Akt on S9, which leads to its inactivation; however, GSK-3β also can regulate the activity of the PI3K/Akt/mTORC1 pathway by phosphorylating molecules such as PTEN, TSC2, p70S6K, and 4E-BP1. To further elucidate the roles of GSK-3β in chemotherapeutic drug and hormonal resistance of MCF-7 breast cancer cells, we transfected MCF-7 breast cancer cells with wild-type (WT), kinase-dead (KD), and constitutively activated (A9) forms of GSK-3β. MCF-7/GSK-3β(KD) cells were more resistant to doxorubicin and tamoxifen compared with either MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells. In the presence and absence of doxorubicin, the MCF-7/GSK-3β(KD) cells formed more colonies in soft agar compared with MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells. In contrast, MCF-7/GSK-3β(KD) cells displayed an elevated sensitivity to the mTORC1 blocker rapamycin compared with MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells, while no differences between the 3 cell types were observed upon treatment with a MEK inhibitor by itself. However, resistance to doxorubicin and tamoxifen were alleviated in MCF-7/GSK-3β(KD) cells upon co-treatment with an MEK inhibitor, indicating regulation of this resistance by the Raf/MEK/ERK pathway. Treatment of MCF-7 and MCF-7/GSK-3β(WT) cells with doxorubicin eliminated the detection of S9-phosphorylated GSK-3β, while total GSK-3β was still detected. In contrast, S9-phosphorylated GSK-3β was still detected in MCF-7/GSK-3β(KD) and MCF-7/GSK-3β(A9) cells, indicating that one of the effects of doxorubicin on MCF-7 cells was suppression of S9-phosphorylated GSK-3β, which could result in increased GSK-3β activity. Taken together, these results demonstrate that introduction of GSK-3β(KD) into MCF-7 breast cancer cells promotes resistance to doxorubicin and tamoxifen, but sensitizes the cells to mTORC1 blockade by rapamycin. Therefore GSK-3β is a key regulatory molecule in sensitivity of breast cancer cells to chemo-, hormonal, and targeted therapy.

DOI: 10.4161/cc.27728
PubMed: 24407515
PubMed Central: PMC3979918


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Inhibition of GSK-3β activity can result in drug and hormonal resistance and alter sensitivity to targeted therapy in MCF-7 breast cancer cells.</title>
<author>
<name sortKey="Sokolosky, Melissa" sort="Sokolosky, Melissa" uniqKey="Sokolosky M" first="Melissa" last="Sokolosky">Melissa Sokolosky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chappell, William H" sort="Chappell, William H" uniqKey="Chappell W" first="William H" last="Chappell">William H. Chappell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Stadelman, Kristin" sort="Stadelman, Kristin" uniqKey="Stadelman K" first="Kristin" last="Stadelman">Kristin Stadelman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Abrams, Stephen L" sort="Abrams, Stephen L" uniqKey="Abrams S" first="Stephen L" last="Abrams">Stephen L. Abrams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Davis, Nicole M" sort="Davis, Nicole M" uniqKey="Davis N" first="Nicole M" last="Davis">Nicole M. Davis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Steelman, Linda S" sort="Steelman, Linda S" uniqKey="Steelman L" first="Linda S" last="Steelman">Linda S. Steelman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mccubrey, James A" sort="Mccubrey, James A" uniqKey="Mccubrey J" first="James A" last="Mccubrey">James A. Mccubrey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2014">2014</date>
<idno type="RBID">pubmed:24407515</idno>
<idno type="pmid">24407515</idno>
<idno type="doi">10.4161/cc.27728</idno>
<idno type="pmc">PMC3979918</idno>
<idno type="wicri:Area/Main/Corpus">000F08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000F08</idno>
<idno type="wicri:Area/Main/Curation">000F08</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000F08</idno>
<idno type="wicri:Area/Main/Exploration">000F08</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Inhibition of GSK-3β activity can result in drug and hormonal resistance and alter sensitivity to targeted therapy in MCF-7 breast cancer cells.</title>
<author>
<name sortKey="Sokolosky, Melissa" sort="Sokolosky, Melissa" uniqKey="Sokolosky M" first="Melissa" last="Sokolosky">Melissa Sokolosky</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Chappell, William H" sort="Chappell, William H" uniqKey="Chappell W" first="William H" last="Chappell">William H. Chappell</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Stadelman, Kristin" sort="Stadelman, Kristin" uniqKey="Stadelman K" first="Kristin" last="Stadelman">Kristin Stadelman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Abrams, Stephen L" sort="Abrams, Stephen L" uniqKey="Abrams S" first="Stephen L" last="Abrams">Stephen L. Abrams</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Davis, Nicole M" sort="Davis, Nicole M" uniqKey="Davis N" first="Nicole M" last="Davis">Nicole M. Davis</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Steelman, Linda S" sort="Steelman, Linda S" uniqKey="Steelman L" first="Linda S" last="Steelman">Linda S. Steelman</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
<author>
<name sortKey="Mccubrey, James A" sort="Mccubrey, James A" uniqKey="Mccubrey J" first="James A" last="Mccubrey">James A. Mccubrey</name>
<affiliation wicri:level="2">
<nlm:affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</nlm:affiliation>
<country>États-Unis</country>
<placeName>
<region type="state">Caroline du Nord</region>
</placeName>
<wicri:cityArea>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville</wicri:cityArea>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Cell cycle (Georgetown, Tex.)</title>
<idno type="eISSN">1551-4005</idno>
<imprint>
<date when="2014" type="published">2014</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Antibiotics, Antineoplastic (pharmacology)</term>
<term>Antineoplastic Agents, Hormonal (pharmacology)</term>
<term>Doxorubicin (pharmacology)</term>
<term>Drug Resistance, Neoplasm (MeSH)</term>
<term>Female (MeSH)</term>
<term>Glycogen Synthase Kinase 3 (antagonists & inhibitors)</term>
<term>Glycogen Synthase Kinase 3 (metabolism)</term>
<term>Glycogen Synthase Kinase 3 beta (MeSH)</term>
<term>Humans (MeSH)</term>
<term>MCF-7 Cells (MeSH)</term>
<term>Mechanistic Target of Rapamycin Complex 1 (MeSH)</term>
<term>Molecular Targeted Therapy (MeSH)</term>
<term>Multiprotein Complexes (antagonists & inhibitors)</term>
<term>Multiprotein Complexes (metabolism)</term>
<term>Phosphorylation (MeSH)</term>
<term>Sirolimus (pharmacology)</term>
<term>TOR Serine-Threonine Kinases (antagonists & inhibitors)</term>
<term>TOR Serine-Threonine Kinases (metabolism)</term>
<term>Tamoxifen (pharmacology)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Antibiotiques antinéoplasiques (pharmacologie)</term>
<term>Antinéoplasiques hormonaux (pharmacologie)</term>
<term>Cellules MCF-7 (MeSH)</term>
<term>Complexe-1 cible mécanistique de la rapamycine (MeSH)</term>
<term>Complexes multiprotéiques (antagonistes et inhibiteurs)</term>
<term>Complexes multiprotéiques (métabolisme)</term>
<term>Doxorubicine (pharmacologie)</term>
<term>Femelle (MeSH)</term>
<term>Glycogen Synthase Kinase 3 (antagonistes et inhibiteurs)</term>
<term>Glycogen Synthase Kinase 3 (métabolisme)</term>
<term>Glycogen synthase kinase 3 beta (MeSH)</term>
<term>Humains (MeSH)</term>
<term>Phosphorylation (MeSH)</term>
<term>Résistance aux médicaments antinéoplasiques (MeSH)</term>
<term>Sirolimus (pharmacologie)</term>
<term>Sérine-thréonine kinases TOR (antagonistes et inhibiteurs)</term>
<term>Sérine-thréonine kinases TOR (métabolisme)</term>
<term>Tamoxifène (pharmacologie)</term>
<term>Thérapie moléculaire ciblée (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="antagonists & inhibitors" xml:lang="en">
<term>Glycogen Synthase Kinase 3</term>
<term>Multiprotein Complexes</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>Glycogen Synthase Kinase 3</term>
<term>Multiprotein Complexes</term>
<term>TOR Serine-Threonine Kinases</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antibiotics, Antineoplastic</term>
<term>Antineoplastic Agents, Hormonal</term>
<term>Doxorubicin</term>
<term>Sirolimus</term>
<term>Tamoxifen</term>
</keywords>
<keywords scheme="MESH" qualifier="antagonistes et inhibiteurs" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Complexes multiprotéiques</term>
<term>Glycogen Synthase Kinase 3</term>
<term>Sérine-thréonine kinases TOR</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antibiotiques antinéoplasiques</term>
<term>Antinéoplasiques hormonaux</term>
<term>Doxorubicine</term>
<term>Sirolimus</term>
<term>Tamoxifène</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Drug Resistance, Neoplasm</term>
<term>Female</term>
<term>Glycogen Synthase Kinase 3 beta</term>
<term>Humans</term>
<term>MCF-7 Cells</term>
<term>Mechanistic Target of Rapamycin Complex 1</term>
<term>Molecular Targeted Therapy</term>
<term>Phosphorylation</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Cellules MCF-7</term>
<term>Complexe-1 cible mécanistique de la rapamycine</term>
<term>Femelle</term>
<term>Glycogen synthase kinase 3 beta</term>
<term>Humains</term>
<term>Phosphorylation</term>
<term>Résistance aux médicaments antinéoplasiques</term>
<term>Thérapie moléculaire ciblée</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The PI3K/Akt/mTORC1 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, and metastasis. One molecule regulated by this pathway is GSK-3β. GSK-3β is phosphorylated by Akt on S9, which leads to its inactivation; however, GSK-3β also can regulate the activity of the PI3K/Akt/mTORC1 pathway by phosphorylating molecules such as PTEN, TSC2, p70S6K, and 4E-BP1. To further elucidate the roles of GSK-3β in chemotherapeutic drug and hormonal resistance of MCF-7 breast cancer cells, we transfected MCF-7 breast cancer cells with wild-type (WT), kinase-dead (KD), and constitutively activated (A9) forms of GSK-3β. MCF-7/GSK-3β(KD) cells were more resistant to doxorubicin and tamoxifen compared with either MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells. In the presence and absence of doxorubicin, the MCF-7/GSK-3β(KD) cells formed more colonies in soft agar compared with MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells. In contrast, MCF-7/GSK-3β(KD) cells displayed an elevated sensitivity to the mTORC1 blocker rapamycin compared with MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells, while no differences between the 3 cell types were observed upon treatment with a MEK inhibitor by itself. However, resistance to doxorubicin and tamoxifen were alleviated in MCF-7/GSK-3β(KD) cells upon co-treatment with an MEK inhibitor, indicating regulation of this resistance by the Raf/MEK/ERK pathway. Treatment of MCF-7 and MCF-7/GSK-3β(WT) cells with doxorubicin eliminated the detection of S9-phosphorylated GSK-3β, while total GSK-3β was still detected. In contrast, S9-phosphorylated GSK-3β was still detected in MCF-7/GSK-3β(KD) and MCF-7/GSK-3β(A9) cells, indicating that one of the effects of doxorubicin on MCF-7 cells was suppression of S9-phosphorylated GSK-3β, which could result in increased GSK-3β activity. Taken together, these results demonstrate that introduction of GSK-3β(KD) into MCF-7 breast cancer cells promotes resistance to doxorubicin and tamoxifen, but sensitizes the cells to mTORC1 blockade by rapamycin. Therefore GSK-3β is a key regulatory molecule in sensitivity of breast cancer cells to chemo-, hormonal, and targeted therapy. </div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">24407515</PMID>
<DateCompleted>
<Year>2015</Year>
<Month>05</Month>
<Day>11</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>30</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1551-4005</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>13</Volume>
<Issue>5</Issue>
<PubDate>
<Year>2014</Year>
</PubDate>
</JournalIssue>
<Title>Cell cycle (Georgetown, Tex.)</Title>
<ISOAbbreviation>Cell Cycle</ISOAbbreviation>
</Journal>
<ArticleTitle>Inhibition of GSK-3β activity can result in drug and hormonal resistance and alter sensitivity to targeted therapy in MCF-7 breast cancer cells.</ArticleTitle>
<Pagination>
<MedlinePgn>820-33</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.4161/cc.27728</ELocationID>
<Abstract>
<AbstractText>The PI3K/Akt/mTORC1 pathway plays prominent roles in malignant transformation, prevention of apoptosis, drug resistance, and metastasis. One molecule regulated by this pathway is GSK-3β. GSK-3β is phosphorylated by Akt on S9, which leads to its inactivation; however, GSK-3β also can regulate the activity of the PI3K/Akt/mTORC1 pathway by phosphorylating molecules such as PTEN, TSC2, p70S6K, and 4E-BP1. To further elucidate the roles of GSK-3β in chemotherapeutic drug and hormonal resistance of MCF-7 breast cancer cells, we transfected MCF-7 breast cancer cells with wild-type (WT), kinase-dead (KD), and constitutively activated (A9) forms of GSK-3β. MCF-7/GSK-3β(KD) cells were more resistant to doxorubicin and tamoxifen compared with either MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells. In the presence and absence of doxorubicin, the MCF-7/GSK-3β(KD) cells formed more colonies in soft agar compared with MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells. In contrast, MCF-7/GSK-3β(KD) cells displayed an elevated sensitivity to the mTORC1 blocker rapamycin compared with MCF-7/GSK-3β(WT) or MCF-7/GSK-3β(A9) cells, while no differences between the 3 cell types were observed upon treatment with a MEK inhibitor by itself. However, resistance to doxorubicin and tamoxifen were alleviated in MCF-7/GSK-3β(KD) cells upon co-treatment with an MEK inhibitor, indicating regulation of this resistance by the Raf/MEK/ERK pathway. Treatment of MCF-7 and MCF-7/GSK-3β(WT) cells with doxorubicin eliminated the detection of S9-phosphorylated GSK-3β, while total GSK-3β was still detected. In contrast, S9-phosphorylated GSK-3β was still detected in MCF-7/GSK-3β(KD) and MCF-7/GSK-3β(A9) cells, indicating that one of the effects of doxorubicin on MCF-7 cells was suppression of S9-phosphorylated GSK-3β, which could result in increased GSK-3β activity. Taken together, these results demonstrate that introduction of GSK-3β(KD) into MCF-7 breast cancer cells promotes resistance to doxorubicin and tamoxifen, but sensitizes the cells to mTORC1 blockade by rapamycin. Therefore GSK-3β is a key regulatory molecule in sensitivity of breast cancer cells to chemo-, hormonal, and targeted therapy. </AbstractText>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Sokolosky</LastName>
<ForeName>Melissa</ForeName>
<Initials>M</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chappell</LastName>
<ForeName>William H</ForeName>
<Initials>WH</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Stadelman</LastName>
<ForeName>Kristin</ForeName>
<Initials>K</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Abrams</LastName>
<ForeName>Stephen L</ForeName>
<Initials>SL</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Davis</LastName>
<ForeName>Nicole M</ForeName>
<Initials>NM</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Steelman</LastName>
<ForeName>Linda S</ForeName>
<Initials>LS</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>McCubrey</LastName>
<ForeName>James A</ForeName>
<Initials>JA</Initials>
<AffiliationInfo>
<Affiliation>Department of Microbiology and Immunology; Brody School of Medicine at East Carolina University; Greenville, NC USA.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>T32 CA009156</GrantID>
<Acronym>CA</Acronym>
<Agency>NCI NIH HHS</Agency>
<Country>United States</Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2014</Year>
<Month>01</Month>
<Day>09</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Cell Cycle</MedlineTA>
<NlmUniqueID>101137841</NlmUniqueID>
<ISSNLinking>1551-4005</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000903">Antibiotics, Antineoplastic</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D018931">Antineoplastic Agents, Hormonal</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D046912">Multiprotein Complexes</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>094ZI81Y45</RegistryNumber>
<NameOfSubstance UI="D013629">Tamoxifen</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>80168379AG</RegistryNumber>
<NameOfSubstance UI="D004317">Doxorubicin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.1.1</RegistryNumber>
<NameOfSubstance UI="D058570">TOR Serine-Threonine Kinases</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="C000605506">GSK3B protein, human</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000071679">Glycogen Synthase Kinase 3 beta</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.1</RegistryNumber>
<NameOfSubstance UI="D000076222">Mechanistic Target of Rapamycin Complex 1</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 2.7.11.26</RegistryNumber>
<NameOfSubstance UI="D038362">Glycogen Synthase Kinase 3</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>W36ZG6FT64</RegistryNumber>
<NameOfSubstance UI="D020123">Sirolimus</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<CommentsCorrectionsList>
<CommentsCorrections RefType="CommentIn">
<RefSource>Cell Cycle. 2014;13(5):697-8</RefSource>
<PMID Version="1">24526116</PMID>
</CommentsCorrections>
</CommentsCorrectionsList>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000903" MajorTopicYN="N">Antibiotics, Antineoplastic</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018931" MajorTopicYN="N">Antineoplastic Agents, Hormonal</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004317" MajorTopicYN="N">Doxorubicin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D019008" MajorTopicYN="Y">Drug Resistance, Neoplasm</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005260" MajorTopicYN="N">Female</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D038362" MajorTopicYN="N">Glycogen Synthase Kinase 3</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="Y">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000071679" MajorTopicYN="N">Glycogen Synthase Kinase 3 beta</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D061986" MajorTopicYN="N">MCF-7 Cells</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000076222" MajorTopicYN="N">Mechanistic Target of Rapamycin Complex 1</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058990" MajorTopicYN="N">Molecular Targeted Therapy</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D046912" MajorTopicYN="N">Multiprotein Complexes</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D010766" MajorTopicYN="N">Phosphorylation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D020123" MajorTopicYN="N">Sirolimus</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058570" MajorTopicYN="N">TOR Serine-Threonine Kinases</DescriptorName>
<QualifierName UI="Q000037" MajorTopicYN="N">antagonists & inhibitors</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D013629" MajorTopicYN="N">Tamoxifen</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">GSK-3β</Keyword>
<Keyword MajorTopicYN="N">MEK</Keyword>
<Keyword MajorTopicYN="N">PI3K</Keyword>
<Keyword MajorTopicYN="N">mTOR</Keyword>
<Keyword MajorTopicYN="N">rapamycin</Keyword>
<Keyword MajorTopicYN="N">sorafenib</Keyword>
<Keyword MajorTopicYN="N">targeted therapy</Keyword>
<Keyword MajorTopicYN="N">therapy resistance</Keyword>
<Keyword MajorTopicYN="N">β-catenin</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="entrez">
<Year>2014</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2014</Year>
<Month>1</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2015</Year>
<Month>5</Month>
<Day>12</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">24407515</ArticleId>
<ArticleId IdType="pii">27728</ArticleId>
<ArticleId IdType="doi">10.4161/cc.27728</ArticleId>
<ArticleId IdType="pmc">PMC3979918</ArticleId>
</ArticleIdList>
<ReferenceList>
<Reference>
<Citation>Oncotarget. 2012 Mar;3(3):299-313</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22431556</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Apr 13;374(6523):617-22</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7715701</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2007 Aug 15;67(16):7756-64</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17699780</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2012 Sep;3(9):954-87</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23006971</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Clin Cancer Res. 2006 Sep 1;12(17):5074-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16951223</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2008 Jan 11;283(2):726-32</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17991738</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2006 Dec 1;66(23):11462-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17145894</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2011 Jul;2(7):538-50</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21730367</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2011 Jun;2(6):467-76</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21670491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2012 Jul 6;423(3):490-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22683636</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Cell Biol. 2005 Jan 3;168(1):29-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15631989</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2012 Oct;3(10):1236-45</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23100449</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2009 Jan 18;273(2):194-200</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18606491</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Cancer. 2011 Dec 15;129(12):2916-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21472727</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2011 Dec;2(12):1314-21</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22248929</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Biol Chem. 2007 Jun 8;282(23):16989-7001</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17438332</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 May 15;10(10):1679-89</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21508668</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Oct 1;11(19):3701-2</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22895010</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2011 Aug;2(8):610-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21881167</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2011 Jul;25(7):1064-79</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21436840</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Mar 15;10(6):956-62</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21358261</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Leukemia. 2014 Jan;28(1):15-33</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23778311</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2011 Mar;2(3):251-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21436469</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem Biophys Res Commun. 2005 Sep 9;334(4):1365-73</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16043125</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2005 Mar 1;65(5):1961-72</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15753396</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Feb 1;10(3):377</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21270524</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Oncol. 2005 Nov;27(5):1341-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16211230</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Res. 2005 Mar 15;65(6):2076-81</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">15781615</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Sep 1;10(17):3003-15</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21869603</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Dec 1;11(23):4402-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23172369</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Sep 1;11(17):3159-65</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22895181</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>BMC Cancer. 2009;9:325</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">19751508</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Mar 15;11(6):1053-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22391205</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Dec 1;11(23):4447-61</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23159854</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Mar 1;11(5):1008-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22333593</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1999 Jul 29;400(6743):464-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">10440377</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2011 Jun;2(6):435-47</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21646685</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2012 Jan;3(1):5-6</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22403740</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cancer Lett. 2012 Mar 28;316(2):178-86</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22100174</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1994 Nov 1;303 ( Pt 3):701-4</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7980435</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 1975 Nov;72(11):4435-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">172908</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Adv Biol Regul. 2013 Jan;53(1):146-55</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23073564</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2000 Oct 24;97(22):11960-5</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">11035810</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 May 15;10(10):1563-70</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502814</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 1973 Nov;51(5):1409-16</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">4357757</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Nature. 1995 Dec 21-28;378(6559):785-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8524413</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2012 Oct;3(10):1068-111</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23085539</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Aging (Albany NY). 2011 Mar;3(3):192-222</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21422497</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2008 Jul 3;27(29):4086-95</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">18332865</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncogene. 2014 Mar 27;33(13):1690-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23584478</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Eur J Biochem. 1980 Jun;107(2):519-27</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">6249596</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Natl Cancer Inst. 1995 Nov 1;87(21):1642</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">7563210</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Biochem J. 1993 Nov 15;296 ( Pt 1):15-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">8250835</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Int J Gynecol Cancer. 2011 Apr;21(3):439-44</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21436692</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Proc Natl Acad Sci U S A. 2011 Nov 22;108(47):E1204-13</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">22065737</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>EMBO J. 1990 Aug;9(8):2431-8</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">2164470</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Future Oncol. 2006 Feb;2(1):91-100</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">16556076</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Curr Drug Targets. 2006 Nov;7(11):1377-88</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">17100578</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2011 Aug;2(8):588-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21876228</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 May 15;10(10):1525</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21502809</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2012 Nov 15;11(22):4242-51</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">23095640</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>J Immunol. 2011 May 1;186(9):5217-26</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21422248</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Oncotarget. 2011 May;2(5):378-92</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21623005</ArticleId>
</ArticleIdList>
</Reference>
<Reference>
<Citation>Cell Cycle. 2011 Jan 1;10(1):90-9</Citation>
<ArticleIdList>
<ArticleId IdType="pubmed">21191178</ArticleId>
</ArticleIdList>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>États-Unis</li>
</country>
<region>
<li>Caroline du Nord</li>
</region>
</list>
<tree>
<country name="États-Unis">
<region name="Caroline du Nord">
<name sortKey="Sokolosky, Melissa" sort="Sokolosky, Melissa" uniqKey="Sokolosky M" first="Melissa" last="Sokolosky">Melissa Sokolosky</name>
</region>
<name sortKey="Abrams, Stephen L" sort="Abrams, Stephen L" uniqKey="Abrams S" first="Stephen L" last="Abrams">Stephen L. Abrams</name>
<name sortKey="Chappell, William H" sort="Chappell, William H" uniqKey="Chappell W" first="William H" last="Chappell">William H. Chappell</name>
<name sortKey="Davis, Nicole M" sort="Davis, Nicole M" uniqKey="Davis N" first="Nicole M" last="Davis">Nicole M. Davis</name>
<name sortKey="Mccubrey, James A" sort="Mccubrey, James A" uniqKey="Mccubrey J" first="James A" last="Mccubrey">James A. Mccubrey</name>
<name sortKey="Stadelman, Kristin" sort="Stadelman, Kristin" uniqKey="Stadelman K" first="Kristin" last="Stadelman">Kristin Stadelman</name>
<name sortKey="Steelman, Linda S" sort="Steelman, Linda S" uniqKey="Steelman L" first="Linda S" last="Steelman">Linda S. Steelman</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/RapamycinFungusV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000E61 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000E61 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    RapamycinFungusV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:24407515
   |texte=   Inhibition of GSK-3β activity can result in drug and hormonal resistance and alter sensitivity to targeted therapy in MCF-7 breast cancer cells.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:24407515" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a RapamycinFungusV1 

Wicri

This area was generated with Dilib version V0.6.38.
Data generation: Thu Nov 19 21:55:41 2020. Site generation: Thu Nov 19 22:00:39 2020